Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 13: 1037230, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439266

RESUMEN

Vascular calcification (VC) is associated with a number of cardiovascular diseases, as well as chronic kidney disease. The role of smooth muscle cells (SMC) has already been widely explored in VC, as has the role of intracellular Ca2+ in regulating SMC function. Increased intracellular calcium concentration ([Ca2+]i) in vascular SMC has been proposed to stimulate VC. However, the contribution of the non-selective Piezo1 mechanosensitive cation channels to the elevation of [Ca2+]i, and consequently to the process of VC has never been examined. In this work the essential contribution of Piezo1 channels to arterial medial calcification is demonstrated. The presence of Piezo1 was proved on human aortic smooth muscle samples using immunohistochemistry. Quantitative PCR and Western blot analysis confirmed the expression of the channel on the human aortic smooth muscle cell line (HAoSMC). Functional measurements were done on HAoSMC under control and calcifying condition. Calcification was induced by supplementing the growth medium with inorganic phosphate (1.5 mmol/L, pH 7.4) and calcium (CaCl2, 0.6 mmol/L) for 7 days. Measurement of [Ca2+]i using fluorescent Fura-2 dye upon stimulation of Piezo1 channels (either by hypoosmolarity, or Yoda1) demonstrated significantly higher calcium transients in calcified as compared to control HAoSMCs. The expression of mechanosensitive Piezo1 channel is augmented in calcified arterial SMCs leading to a higher calcium influx upon stimulation. Activation of the channel by Yoda1 (10 µmol/L) enhanced calcification of HAoSMCs, while Dooku1, which antagonizes the effect of Yoda1, reduced this amplification. Application of Dooku1 alone inhibited the calcification. Knockdown of Piezo1 by siRNA suppressed the calcification evoked by Yoda1 under calcifying conditions. Our results demonstrate the pivotal role of Piezo1 channels in arterial medial calcification.

2.
Antioxidants (Basel) ; 10(9)2021 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-34573047

RESUMEN

Aging and frailty are associated with a decline in muscle force generation, which is a direct consequence of reduced muscle quantity and quality. Among the leading contributors to aging is the generation of reactive oxygen species, the byproducts of terminal oxidation. Their negative effects can be moderated via antioxidant supplementation. Krill oil and astaxanthin (AX) are nutraceuticals with a variety of health promoting, geroprotective, anti-inflammatory, anti-diabetic and anti-fatigue effects. In this work, we examined the functional effects of these two nutraceutical agents supplemented via pelleted chow in aging mice by examining in vivo and in vitro skeletal muscle function, along with aspects of intracellular and mitochondrial calcium homeostasis, as well as cognition and spatial memory. AX diet regimen limited weight gain compared to the control group; however, this phenomenon was not accompanied by muscle tissue mass decline. On the other hand, both AX and krill oil supplementation increased force production without altering calcium homeostasis during excitation-contraction coupling mechanism or mitochondrial calcium uptake processes. We also provide evidence of improved spatial memory and learning ability in aging mice because of krill oil supplementation. Taken together, our data favors the application of antioxidant nutraceuticals as geroprotectors to improve cognition and healthy aging by virtue of improved skeletal muscle force production.

3.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34360541

RESUMEN

Photodamage-induced and viral keratitis could benefit from treatment with novel nonsteroid anti-inflammatory agents. Therefore, we determined whether human corneal epithelial cells (HCECs) express members of the endocannabinoid system (ECS), and examined how the endocannabinoid anandamide (AEA, N-arachidonoyl ethanolamine) influences the Toll-like receptor 3 (TLR3) agonism- or UVB irradiation-induced inflammatory response of these cells. Other than confirming the presence of cannabinoid receptors, we show that endocannabinoid synthesizing and catabolizing enzymes are also expressed in HCECs in vitro, as well as in the epithelial layer of the human cornea in situ, proving that they are one possible source of endocannabinoids. p(I:C) and UVB irradiation was effective in promoting the transcription and secretion of inflammatory cytokines. Surprisingly, when applied alone in 100 nM and 10 µM, AEA also resulted in increased pro-inflammatory cytokine production. Importantly, AEA further increased levels of these cytokines in the UVB model, whereas its lower concentration partially prevented the transcriptional effect of p(I:C), while not decreasing the p(I:C)-induced cytokine release. HCECs express the enzymatic machinery required to produce endocannabinoids both in vitro and in situ. Moreover, our data show that, despite earlier reports about the anti-inflammatory potential of AEA in murine cornea, its effects on the immune phenotype of human corneal epithelium may be more complex and context dependent.


Asunto(s)
Antiinflamatorios/farmacología , Ácidos Araquidónicos/farmacología , Endocannabinoides/farmacología , Epitelio Corneal/inmunología , Inflamación/inmunología , Alcamidas Poliinsaturadas/farmacología , Receptor Toll-Like 3/agonistas , Rayos Ultravioleta , Bloqueadores de los Canales de Calcio/farmacología , Epitelio Corneal/efectos de los fármacos , Epitelio Corneal/metabolismo , Epitelio Corneal/efectos de la radiación , Regulación de la Expresión Génica , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/radioterapia
4.
J Invest Dermatol ; 140(10): 1909-1918.e8, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32142797

RESUMEN

We have shown previously that endocannabinoids promote sebaceous lipogenesis, and sebocytes are involved in the metabolism of the endocannabinoid-like substance oleoylethanolamide (OEA). OEA is an endogenous activator of GPR119, a recently deorphanized receptor, which currently is being investigated as a promising antidiabetic drug target. In this study, we investigated the effects of OEA as well as the expression and role of GPR119 in human sebocytes. We found that OEA promoted differentiation of human SZ95 sebocytes (elevated lipogenesis, enhanced granulation, and the induction of early apoptotic events), and it switched the cells to a proinflammatory phenotype (increased expression and release of several proinflammatory cytokines). Moreover, we could also demonstrate that GPR119 was expressed in human sebocytes, and its small interfering RNA-mediated gene silencing suppressed OEA-induced sebaceous lipogenesis, which was mediated via c-Jun N-terminal kinase, extracellular signal-regulated kinase 1/2, protein kinase B, and CRE-binding protein activation. Finally, our pilot data demonstrated that GPR119 was downregulated in the sebaceous glands of patients with acne, arguing that GPR119 signaling may indeed be disturbed in acne. Collectively, our findings introduce the OEA/GPR119 signaling as a positive regulator of sebocyte differentiation and highlight the possibility that dysregulation of this pathway may contribute to the development of seborrhea and acne.


Asunto(s)
Receptores Acoplados a Proteínas G/fisiología , Glándulas Sebáceas/citología , Glándulas Sebáceas/fisiología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Citocinas/biosíntesis , Endocannabinoides/farmacología , Humanos , Ácidos Oléicos/farmacología , PPAR alfa/fisiología , Glándulas Sebáceas/inmunología , Transducción de Señal/fisiología
5.
Antioxidants (Basel) ; 9(2)2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31979219

RESUMEN

BACKGROUND: Astaxanthin (AX) a marine carotenoid is a powerful natural antioxidant which protects against oxidative stress and improves muscle performance. Retinol and its derivatives were described to affect lipid and energy metabolism. Up to date, the effects of AX and retinol on excitation-contraction coupling (ECC) in skeletal muscle are poorly described. METHODS: 18 C57Bl6 mice were divided into two groups: Control and AX supplemented in rodent chow for 4 weeks (AstaReal A1010). In vivo and in vitro force and intracellular calcium homeostasis was studied. In some experiments acute treatment with retinol was employed. RESULTS: The voltage activation of calcium transients (V50) were investigated in single flexor digitorum brevis isolated fibers under patch clamp and no significant changes were found following AX supplementation. Retinol shifted V50 towards more positive values and decreased the peak F/F0 of the calcium transients. The amplitude of tetani in the extensor digitorum longus was significantly higher in AX than in control group. Lastly, the mitochondrial calcium uptake was found to be less prominent in AX. CONCLUSION: AX supplementation increases in vitro tetanic force without affecting ECC and exerts a protecting effect on the mitochondria. Retinol treatment has an inhibitory effect on ECC in skeletal muscle.

6.
Front Physiol ; 11: 601090, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33408641

RESUMEN

In mice a naturally occurring 12-bp deletion in the myostatin gene is considered responsible for the compact phenotype (MstnCmpt-dl1Abc, Cmpt) labeled by a tremendous increase in body weight along with signs of muscle weakness, easier fatigability, decreased Orai1 expression and store operated calcium entry (SOCE). Here, on the one hand, Cmpt fibers were reconstructed with venus-Orai1 but this failed to restore SOCE. On the other hand, the endogenous Orai1 was silenced in fibers from wild type C57Bl6 mice which resulted in ∼70% of Orai1 being silenced in whole muscle homogenates as confirmed by Western blot, accompanied by an inhibitory effect on the voltage dependence of SR calcium release that manifested in a slight shift toward more positive potential values. This maneuver completely hampered SOCE. Our observations are consistent with the idea that Orai1 channels are present in distinct pools responsible for either a rapid refilling of the SR terminal cisternae connected to each voltage-activated calcium transient, or a slow SOCE associated with an overall depletion of calcium in the SR lumen. Furthermore, when Cmpt cells were loaded with the mitochondrial membrane potential sensitive dye TMRE, fiber segments with depolarized mitochondria were identified covering on average 26.5 ± 1.5% of the fiber area. These defective areas were located around the neuromuscular junction and displayed significantly smaller calcium transients. The ultrastructural analysis of the Cmpt fibers revealed changes in the mitochondrial morphology. In addition, the mitochondrial calcium uptake during repetitive stimulation was higher in the Cmpt fibers. Our results favor the idea that reduced function and/or expression of SOCE partners (in this study Orai1) and mitochondrial defects could play an important role in muscle weakness and degeneration associated with certain pathologies, perhaps including loss of function of the neuromuscular junction and aging.

7.
J Invest Dermatol ; 138(2): 365-374, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28964718

RESUMEN

Transient receptor potential (TRP) ion channels were first characterized on neurons, where they are classically implicated in sensory functions; however, research in recent decades has shown that many of these channels are also expressed on nonneuronal cell types. Emerging findings have highlighted the role of TRP channels in the skin, where they have been shown to be important in numerous cutaneous functions. Of particular interest is TRPV3, which was first described on keratinocytes. Its functional importance was supported when its gain-of-function mutation was linked to Olmsted syndrome, which is characterized by palmoplantar keratoderma, periorifacial hyperkeratosis, diffuse hypotrichosis and alopecia, and itch. Despite these exciting results, we have no information about the role and functionality of TRPV3 on keratinocytes at the cellular level. In this study, we identified TRPV3 expression both on human skin and cultured epidermal keratinocytes. TRPV3 stimulation was found to function as a Ca2+-permeable ion channel that suppresses proliferation of epidermal keratinocytes and induces cell death. Stimulation of the channel also triggers a strong proinflammatory response via the NF-κB pathway. Collectively, our data show that TRPV3 is functionally expressed on human epidermal keratinocytes and that it plays a role in cutaneous inflammatory processes.


Asunto(s)
Apoptosis/inmunología , Dermatitis/inmunología , Epidermis/inmunología , Queratinocitos/inmunología , Canales Catiónicos TRPV/inmunología , Calcio/metabolismo , Cationes Bivalentes/metabolismo , Proliferación Celular , Dermatitis/patología , Epidermis/metabolismo , Células HEK293 , Voluntarios Sanos , Humanos , Queratinocitos/metabolismo , Canales Catiónicos TRPV/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...